Riesz means on symmetric spaces
نویسندگان
چکیده
We prove $L^{p}$-boundedness of oscillating multipliers on some classes rank one locally symmetric spaces.
منابع مشابه
On Riesz Means of Eigenvalues
In this article we prove the equivalence of certain inequalities for Riesz means of eigenvalues of the Dirichlet Laplacian with a classical inequality of Kac. Connections are made via integral transforms including those of Laplace, Legendre, Weyl, and Mellin, and the Riemann-Liouville fractional transform. We also prove new universal eigenvalue inequalities and monotonicity principles for Diric...
متن کاملSpectra of Bochner-Riesz means on L
The Bochner-Riesz means are shown to have either the unit interval [0, 1] or the whole complex plane as their spectra on Lp, 1 ≤ p <∞
متن کاملConvolution Operators and Bochner-Riesz Means on Herz-Type Hardy Spaces in the Dunkl Setting
The classical theory of Hardy spaces on n has received an important impetus from the work of Fefferman and Stein, Lu and Yang 1, 2 . Their work resulted in many applications involving sharp estimates for convolution and multiplier operators. By using the technique of Herz-type Hardy spaces for the Dunkl operator Λα, we are attempting in this paper to study the Dunkl convolution operators, andwe...
متن کاملCompact operators on Banach spaces: Fredholm-Riesz
1. Compact operators on Banach spaces 2. Appendix: total boundedness and Arzela-Ascoli [Fredholm 1900/1903] treated compact operators as limiting cases of finite-rank operators. [1] [Riesz 1917] defined and made direct use of the compactness condition, more apt for Banach spaces. See [Riesz-Nagy 1952] for extensive discussion in the Hilbert-space situation, and many references to original paper...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2021.124970